

High Performance Computing and Networking Lab

Center for Language Engineering

Al-Khawarizmi Institute Of Computer Science,

University Of Engineering and Technology, Lahore

This document gives detailed description of

developments that were made during the third

milestone of this project. It provides technical

progress report on basic crawler development

and testing along with code and test case

ہمکنار پاکستان
Urdu Search Engine

Basic Crawler Development and Testing
Report

Contents
 .. 1

Contents .. 3

Crawler development steps: ... 4

Crawler Testing: .. 7

Apache HADOOP Configuration .. 8

Apache HBASE Configuration .. 10

Apache Solr Configuration .. 11

Apache Nutch Configuration and Testing with Hadoop cluster ... 11

Appendix A: ... 14

Apache Hadoop ... 15

Apache Hbase ... 17

Apache Nutch .. 17

Apache Solr ... 19

References: ... 32

Crawler development steps:

A crawler is computer program that repeat some steps again and again to crawl the web. There are

some basic steps that are found almost in all crawlers as show in figure 1. These steps are discussed

below.

1. List of URLs (seed)

2. Database

3. URLs Selection from database

4. Fetching

5. Parsing

6. Indexing

7. Go to Next Iteration

Figure 1. Basic Crawler Workflow Diagram

Each of these steps are discussed below.

1. List Of URLs (seed)

A crawler require some URLs at start to crawl the web. These URLs are also called seed. A crawler

first fetch these URLs and then according to the configuration, it goes to outer links and inner links

of these URLs in next iteration and so on. It is very import to select URLs as seed according to given

constraints as crawler is going to expand according to the outer links.

For Our Case, in order to select URLs for Urdu documents, the best URLs will be those having most

outer links that are also have Urdu content. But as it is not possible to completely rely on seed URLs

where all of outer links are in Urdu, we have to do some post processing to finalize URLs that are

going to be fetched. It is very crucial step as if seed is not appropriate (non-Urdu content) then

there is possibility that out links of this URLs will also be in non-Urdu language.

2. Database

In order to store data and metadata of crawled URLs, a database is required. There a two basic types

of database, relational and non-relational. Relational databases like MYSQL, SQLITE etc. represent

and store data in rows and columns. Non-relational databases like HBase, Mongo etc. are those

databases where there is no relation (joins) between tables. As web data is of different type like

html, video, audio, pdfs etc. It is good to use non-relational databases to handle all such type of

data. Also as crawler data is going to expand quickly, it is good that storage should be distributed to

handle such situation. Crawler have to access the database when it has to select which URLs will be

fetched in next iteration. URLs can be out links as well as in links, using some selection or scheduling

algorithm, when these URLs will be fetched.

3. URLs selection

As discussed is last section, this is the main point where we can control which type of web data

should be fetched. For a page, there are two type of hyperlinks on it, one is those URLs that have

same domain as current page. It is called inner link and second URLs is the one that does not have

same name as current page, it is called outer link. In order to crawl few websites only e.g. Wikipedia,

only inner links should be allowed by crawler to fetch in each iteration. But it one want to crawl the

whole web, crawler should crawl outer links also.

In order to crawl Urdu web documents only, we have to not only crawl all inner links of given seed

but we have to go to outer links also. As it is quite possible that outer links will be non-Urdu pages.

Even this situation can happen in inner links. For example bbc.com, this website is basically in

English, but there are many other languages option available in home page e.g. bbc.com/URDU,

bbc.com/Arabic etc. So have to apply some filter at this stage to sure that URLs are of Urdu

language. But before crawling a web page, it is very difficult to say about language of content

especially for outer links. So we cannot completely apply filter at this stage. We have to check the

content for 100 percent confirmation about the document language. We can apply filters in parsing

or indexing stage for this purpose.

4. Fetching

In this step, URLs are download from web in Batch mode. For this purpose, every language has some

API (libraries) available e.g. in python you can use urllib2 or requests libs and in java you can use

HttpUrlConnection class. In order to avoid many consecutive requests to same web server, some

limit should be applied before next request. If one does not apply a limit to crawler to request to

same server, then it is quite possible that there crawler will be blocked soon.

5. Paring

A web page consist of html tags, JavaScript and JQuery code along with original text. In order to

extract text from a web page, all these tags should be removed. There are basically two main parts

of a web document, one in header that contains title and some metadata tags and second is the

body that contains complete page content. By simple intuition, we can assume that title tags

contains title of page and content in body tags is the complete text of document. There are many

well know parsers available in different languages as well as standalone application e.g.

Beautifulsoup (in Python) can parse web document completely and Apache Tika is standalone

application used to parse html.

In order to know about different statistics of a web page e.g. language, date etc. Parser can be

developed such that along with parsing, it can give you different statistics of page content.

6. Indexing

Indexing is used to quickly search required documents from crawled webpage. It not only optimize

speed but performance. Without indexing, a search engine has to scan through all stored

documents. There are many different algorithms available that can be used to create an index of

crawled webpages. There are some basic steps that are performed on text during indexing. These

are briefly discussed here.

6.1. Stop Words Removal

There are some words in each language that are commonly used e.g. in English “the”, “is” etc.

Search Engines remove these words at time of search and indexing.

6.2. Tokenization

Before indexing, text of each document is tokenized based on space, comma etc. as delimiter.

6.3. Stemming

Stemming is the process to get the root word of each word e.g. “Retrieval” root word is

retrieve. So instead of saving each word, only its stem word is saved. It will not only save the

space but also reduce retrieval time. Every language has its own stemmers [1]. In stemming, all

words are changed to lower case. It is also called normalization.

6.4. Store the terms

There are many techniques available that are used to store the index. The most common one is

called inverted index.

Inverted index is the list of words and the documents (Ids) in which they appear. It can be

consider as a tabular form where rows are unique terms (words) and columns names are

document unique ids. Data in the cell can be the frequency of occurrence of that word in given

documents. There can be the position of word also in each cell.

For better understanding of indexing, let say we have two text documents with following English

content.

Document 1: “The quick brown fox jumped over the lazy cat“
Document 2: “Quick brown foxes jump over lazy dogs in summer”

First of all, stop words are removed from these documents. Here “the” and “in” are two stop words.

Then they are tokenized and then stem of each word in found. For example dogs stem is dog and foxes
stem is fox. Final position of tokens is shown in Table 1. Here table rows are the tokens of text and there
are only two columns as there are only two documents. Column names are documents unique ids that
can be a URL for web document. When someone search “quick brown fox” then matches will be found.

Term Document_1 Document_2
brown X X
cat x
dog x
fox X X
jump X X
lazy X X
over x x
quick x
summer x

Table 1: Inverted Index Example

For document 1, corresponding score is three as all three search terms exist in it while document 2 score

is 2 as only two search terms are found. Simply counting the matching terms we can say that document

1 is more relevant that document 2. There can be different results based on different selection

algorithm. For example based on position of one word from other will change the results also [2].

7. Next Iteration

When indexing is complete, there can be an optional step to remove duplicates if exists. After that

crawler goes to step 3 to select new URLs for fetching. This process is continued until a given depth

value.

There are many open source crawlers available with different characteristics e.g. scrapy, Apache Nutch,

Storm crawler, wget, spider and Opese etc. [3]. In order to crawl whole web, it should be scale able

according to the situation. For this scenario, Apache Nutch is the best optional as it can be distributed

using Apache Hadoop to as many nodes as required. Also it can store crawled data as distributed key

value pair e.g. using Hbase etc. (this support is available is Nutch version 2.x). It has very good

architecture to write a new plugin according to new polices. It has also support to index documents to

Apache Solr or Elasticsearch [4][5].

Crawler Testing:

Apache Nutch does not have well documentation available but its simple startup guide can be found on

many web sites. There are two Nutch versions available one is 1.x and second is 2.x. Both version are

being used for different purposes. The main difference between 1.x and 2.x is that 2.x has the support of

Apache Hadoop while 1.x version does not support Hadoop. It stores crawled data in segment on local

file system according to given configuration. After research and testing, we have decided to use version

2.x as it can give many other benefits that we cannot obtain in version 1.x for example it supports Hbase

that is a distributed key value pair data. For post processing, we can integrate Apache Hive with it. We

can scale up or down Hadoop cluster without interruption of crawling job. Hadoop also provides data

reliability i.e. if some nodes (machines) goes down, then it can recover data without any problem by its

replication property. To index crawled documents, Apache Solr has been decided to use. It provides full

text search. So in order to crawl some web, Hadoop, Hbase and Solr should be configured first. Details of

each configuration is given below.

Apache HADOOP Configuration
In deployment mode, Apache Hadoop is used in distributed mode that requires a lot of machines

connected together to make a cluster. It can be used is pseudo distributed mode on single system for

testing purpose. Following are the configuration steps used to run Hadoop is pseudo distributed mode.

1. JDK Installation

In order to run Hadoop, Nutch , Hbase JDK is required. JDK 1.8 was installed in Linux based

system with following command.

sudo apt-get install openjdk-8-jdk

2. SSH configuration

In order to use Hadoop, it is required that user should SSH to localhost (and to other nodes in

distributed mode) in passwordless mode. For this purpose, following steps are taken

ssh-keygen

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

ssh localhost

3. Disable IPV6 if enabled

In order to disable IPV6, /etc/sysctl.conf is updated as following(replaced 0 with 1)

net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
net.ipv6.conf.lo.disable_ipv6 = 1

After that system was rebooted.

4. Download and install Apache Hadoop

Apache Nutch supports two version of Hadoop as given in documentation 1.2.1 and 2.5.2. In 1.x

series, 1.2.1 is the most stable version while 2.x series is most continues for further update in

version. We have decided to use version 1.2.1 (we may switch to 2.x series in deployment if

required). Its binary format was downloaded from its given repo [6] and extracted to

/home/hpcnl/crawler/hadoop-1.2.1 directory.

5. Update .bashrc

This file is used to set environmental variables that can be used be different application. In order

to configure Hadoop, following variables were exported.

export HADOOP_HOME=/home/hpcnl/crawler/hadoop-1.2.1
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.31-3.b13.fc21.x86_64
export PATH=$PATH:$HADOOP_HOME/bin

6. Update Hadoop configuration files

There are 4 Hadoop files that should be updated core-site.xml, hdfs-site.xml, mapred-site.xml

and hadoop-env.sh. All these files are placed in $HADOOP_HOME/conf directory.

JAVA_HOME variable was added in hadoop-env.sh as defined in .bashrc file. While remaining 3

files confirmations are updated as given below.

7.1.1. Core-site.xml configuration

<property>

<name>hadoop.tmp.dir</name>

<value>/home/hpcnl/hadoop-1.2.1/tmp</value>

<description>A base for other temporary directories.</description>

</property>

<property>

<name>fs.default.name</name>

<value>hdfs://localhost:54310</value>

<description>The name of the default file system. A URI whose scheme and authority

determine the FileSystem implementation. The uri's

scheme determines the config property (fs.SCHEME.impl) naming the FileSystem

implementation class. The uri's authority is used to

determine the host, port, etc. for a filesystem.

</description>

</property>

And tmp directory is create in $HADOOP home as given in first property.

7.1.2. Mapred-site.xml configuration

<property>

<name>mapred.job.tracker</name>

<value>localhost:54311</value>

<description>

The host and port that the MapReduce job tracker runs

at. If "local", then jobs are run in-process as a single map

and reduce task.

</description>

</property>

7.1.3. Hdfs-site.xml configuration

<property>

<name>dfs.replication</name>

<value>1</value>

<description>Default block replication. The actual number of replications can be specified

when the file is created. The default is used if replication is not specified in create time.

</description>

</property>

7. Format NameNode

In order to start hadoop cluster, first time, its namenode should be formatted.

$HADOOP_HOME/bin/hadoop namenode -format

8. Start Cluster

In order to start cluster, there are many scripts available in bin directory. One can start few

daemons as well as complete cluster. So, in order to run Hadoop all daemons, following

command was used.

$HADOOP_HOME/bin/start-all.sh

9. Verify all daemons

There are basically 5 daemons that should be running all the times when cluster is started

I. NAMENODE

II. SECONDARYNAMENODE

III. DATANODE

IV. JOBTRACKER

V. TASKTRACKER

Details of each daemon can be found in appendix A. In order to check services running or not jps

is used.

Apache HBASE Configuration
Many version of Hbase are available. Recommended version by Apache Nutch is 0.98.x with hadoop 2.x.

For Hadoop version 1.x, recommended version of Hbase was 0.94.x. Similar to Hadoop, Hbase can be

configured in pseudo as well as fully distributed mode. Some details about Hbase can be found in

Appendix A.

Following steps were taken to configure Hbase in pseudo distributed mode.

1. Download and extraction

Apache Hbase was download from one of given mirrors and was extracted to

/home/hpcnl/hbase-0.94.14

2. Update .bashrc file

Hbase HOME with bin path was added in .bashrc file.

export HBASE_HOME=/home/ghulam/Documents/crawler/hbase-0.94.14
export PATH=$PATH:$HBASE_HOME/bin

3. Update some configuration file in conf directory

I. Update hase-env.sh

Export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.31-3.b13.fc21.x86_64
export HBASE_MANAGES_ZK=true

II. Update hbase-site.xml

<property>

<name>hbase.rootdir</name>

<value>hdfs://localhost:54310/hbase</value>

</property>

<property>

<name>hbase.cluster.distributed</name>

<value>true</value>

</property>

<property>

<name>hbase.zookeeper.quorum</name>

<value>localhost</value>

</property>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>hbase.zookeeper.property.clientPort</name>

<value>2181</value>

</property>

<property>

<name>hbase.zookeeper.property.dataDir</name>

<value>/home/hpcnl/hbase-0.94.14/zookeeper</value>

</property>

4. Start Hbase and verify

In order to start Hbase, following script was executed.

$HBASE_HOME/bin/start-hbase.sh

Same command jps was used to verify that all daemons are up. There should three daemons

corresponding running on the system, HRegionServer, HMaster and QuorumPeerMain.

Apache Solr Configuration
Brief introduction of Solr can be found in Appendix A. In our pseudo mode cluster, we are running solr as

single node cluster. There are many version of Solr are available till now but Apache Nutch recommends

4.10.3 version of Solr. That’s why we have decided to use this version in our testing setup. Follow steps

are taken to configure and start solr service.

1. Download and extract

From one of given Solr mirrors, 4.10.3 versions was download and extracted.

2. Schema file is $SOLR_HOME/example/solr/collection1/conf/ is replaced with the schema file

provided by Apache Nutch. Schema.xml file is also given in Appendix A.

3. Run Start.jar (to detach session, use run command in screen)

Java –jar start.jar

Apache Nutch Configuration and Testing with Hadoop cluster
Some introduction and phases details of Apache Nutch can be found in Appendix A. Following

configuration of Apache Nutch was updated to run a test case.

i. Download and install

Apache Nutch 2.x is available in source only. One has to compile it after downloading. After

downloading, following steps are taken to compile the code.

1. Download a source package

2. extract it using tar command and cd in its directory
3. Edit conf/nutch-site.xml

<property>

 <name>http.agent.name</name>

 <value>USE-crawler</value>

</property>

<property>

 <name>storage.data.store.class</name>

 <value>org.apache.gora.hbase.store.HBaseStore</value>

 <description>Default class for storing data</description>

</property>

<property>

 <name>plugin.includes</name>

 <value>protocol-httpclient|protocol-http|indexer-solr|urlfilter-regex|parse-

(html|tika)|index-(basic|more)|urlnormalizer-(pass|regex|basic)|scoring-opic</value>

</property>

<property>

<name>parser.character.encoding.default</name>

<value>utf-8</value>

<description>The character encoding to fall back to when no other information is

available</description>

</property>

<property>

 <name>http.robots.403.allow</name>

 <value>true</value>

</property>

<property>

 <name>db.max.outlinks.per.page</name>

 <value>-1</value>

</property>

<property>

 <name>http.robots.agents</name>

 <value>USE-crawler,*</value>

</property>

4. Edit ivy/ivy.xml , Scroll down to section Gora artifacs and uncomment this line:

 <dependency org="org.apache.gora" name="gora-hbase" rev="0.3" conf="*->default" />
 (It is assumed that we are using hbase)

5. Now Compile using ANT. (For compilation Internet is required)
Go to $NUTCH_HOME and run below command
Ant runtime

6. After successful compilation, runtime directory is created that contains two subdirectory
local and deploy. In order to run Nutch on single system (pseudo distributed), local directroy
setup has been used.

ii. Running first job

In order to run Nutch, first all Hadoop, Hbase daemons should be running along with Solr to

index crawled data. First of a seed is required. It was decided to crawl dawnnews.tv that is an

Urdu website. Following steps are carried out to run our job.

1. Add test URL to seed file

cd apache-nutch-2.3.1/runtime/local/

mkdir urls

echo "http://dawnnews.tv" > urls/seed.txt

2. Inject phase. (it will add given URL to Hbase table)

bin/nutch inject urls/seed.txt -crawlId pk

3. Generate Phase. (It will mark URLs for fetching i.e. URLs selection phase)

bin/nutch generate -topN 9 -crawlId pk

4. Fetching Phase

bin/nutch fetch -all

5. Parsing Phase

bin/nutch parse –all

6. UpdateDb (Hbase table update)

bin/nutch updatedb

7. Indexing to Solr

bin/nutch solrindex http://localhost:8983/solr/ -all -crawlId pk

iii. Check Indexed documents to Solr

In order to test Solr for new document crawled, following query was sent.

http://localhost:8983/solr/collection1/select?q=سیاسی+مصروفیات&wt=json&indent=true&fl=cont

ent&df=content

Which Returns following result

<?xml version="1.0" encoding="UTF-8" ?>

- <response>

+ <lst name="responseHeader">

- <result name="response" numFound="1" start="0">

- <doc>

 <str name="title">Home - Dawn News</str>

 <str name="url">https://www.dawnnews.tv/</str>

 <str name="content">Home - Dawn News LIVE TV Dawn.COM Images Herald Aurora CityFM89 Events Supplements Classifieds

Obituaries Dawn News Television پہلا صفحہ Advertisement مل ھی شا پاکستان کا کابل اور دہلی کے ساتھ واٹر مینجمنٹ پر غور یہ پالیسی مشترکہ مفادات کونسل کے اجلاس کے ایجنڈے میں

http://localhost:8983/solr/collection1/select?q=سیاسی+مصروفیات&wt=json&indent=true&fl=content&df=content
http://localhost:8983/solr/collection1/select?q=سیاسی+مصروفیات&wt=json&indent=true&fl=content&df=content
file://vboxsrv/shared/select
file://vboxsrv/shared/select
file://vboxsrv/shared/select
file://vboxsrv/shared/select

4فوجی عدالتوں سے سزا پانے والے 11:25am 2017, 03تاہم وزیراعظم کی سیاسی مصروفیات کےسبب اسے مؤخر کردیا گیا۔ اپ ڈیٹ مئ و رٹی اہلکار، شہریوں پر حملے اور
ت کی
س

ر دوں کو پھانسی دہشت گرد
گ

ت

 ش
ہ

د

8کابل میں نیٹو قافلے کے قریب دھماکا، 10:17am 2017, 03خطرناک جرائم میں ملوث تھے، آئی ایس پی آر اپ ڈیٹ مئ افراد ہلاک عینی شاہدین کے مطابق دھماکا خودکش تھا، جس کے نتیجے میں قریب کھڑی

 ہے، اونون پ پاکستان اور بھارت کے مفاد میںبھارت براہ راست مذاکرات پر زور ہمارا ماننا ہے کہ عملی-امریکا کا پاک 10:24am 2017, 03عام شہریوں کی گاڑیوں کو بھی شدید نقصان پہنچا۔ اپ ڈیٹ مئ

’ 11:16am 2017, 03ترجمان امریکی اسٹیٹ ڈپارٹمنٹ اپ ڈیٹ مئ ے بھی لیم ک کر ہ ں، پاناما پیپرز کا تعلق کرپشن سے نہیں تھا جسے چور اور لٹیر‘ نواز شریف کا استعفیٰ مانگنے والوں کو دھول چاٹنا پڑے گی

م اپ ڈیٹ مئ مریم نواز کا ٹوئٹر پیغا 03 ,2017 11:01am ' ایبٹ آباد کمیشن کی رپورٹ منظوری کے بعد جاری ہوگی' کمیشن کی رپورٹ میں قومی سلامتی سےمتعلق چند حساس معلومات بھی شامل ں، مریم

ن سلم یگ نن عمران خان کے رویے کے خلاف سندھ اسمبلی میں قرارداد منظور پاکستا 09:58am 2017, 03اورنگ زیب اپ ڈیٹ مئ </str>

 </doc></result></response>

As currently there was only single page in solr, that’s why we got one result according to the query.

Appendix A:

Apache Hadoop
Hadoop is an open source, Java-based programming framework that supports the processing and
storage of extremely large data sets in a distributed computing environment. It is part of the
Apache project sponsored by the Apache Software Foundation [11].

Hadoop makes it possible to run applications on systems with thousands of commodity

hardware nodes, and to handle thousands of terabytes of data. Its distributed file system

facilitates rapid data transfer rates among nodes and allows the system to continue operating in

case of a node failure. This approach lowers the risk of catastrophic system failure and

unexpected data loss, even if a significant number of nodes become inoperative. Consequently,

Hadoop quickly emerged as a foundation for big data processing tasks, such as scientific

analytics, business and sales planning, and processing enormous volumes of sensor data,

including from internet of things sensors [12].

Hadoop Distributed File System (HDFS):
The primary objective of HDFS is to store data reliably even in the presence of failures including
NameNode failures, DataNode failures and network partitions. The NameNode is a single point of
failure for the HDFS cluster and a DataNode stores data in the Hadoop file management system.

HDFS uses a master/slave architecture in which one device (the master) controls one or more
other devices (the slaves). The HDFS cluster consists of a single NameNode and a master server
manages the file system namespace and regulates access to file [14].

NameNode:
NameNode is the centerpiece of HDFS. It is also known as the Master. NameNode only stores the
metadata of HDFS – the directory tree of all files in the file system, and tracks the files across the
cluster. It does not store the actual data or the dataset. The data itself is actually stored in the
DataNodes. It knows the list of the blocks and its location for any given file in HDFS. With this
information NameNode knows how to construct the file from blocks. NameNode is so critical to
HDFS and when the NameNode is down, HDFS/Hadoop cluster is inaccessible and considered
down. NameNode is a single point of failure in Hadoop cluster. It is usually configured with a lot
of memory (RAM). Because the block locations are help in main memory [13].

DataNode
DataNode is responsible for storing the actual data in HDFS. It is also known as the Slave.
NameNode and DataNode are in constant communication. When a DataNode starts up it
announce itself to the NameNode along with the list of blocks it is responsible for but when a
DataNode is down, it does not affect the availability of data or the cluster. NameNode will arrange
for replication for the blocks managed by the DataNode that is not available. DataNode is usually
configured with a lot of hard disk space. Because the actual data is stored in the DataNode [13].

http://searchcio-midmarket.techtarget.com/definition/Apache
http://www.webopedia.com/TERM/P/partition.html
http://www.webopedia.com/TERM/H/hadoop.html
http://www.webopedia.com/TERM/F/file_management_system.html

Figure 1. Hadoop Daemons

Secondary NameNode:
The NameNode stores modifications to the file system as a log appended to a native file system
file, edits. When a NameNode starts up, it reads HDFS state from an image file, fsimage, and then
applies edits from the edits log file. It then writes new HDFS state to the fsimage and starts normal
operation with an empty edits file. Since NameNode merges fsimage and edits files only during
start up, the edits log file could get very large over time on a busy cluster. Another side effect of
a larger edits file is that next restart of NameNode takes longer.

The secondary NameNode merges the fsimage and the edits log files periodically and keeps edits
log size within a limit. It is usually run on a different machine than the primary NameNode since
its memory requirements are on the same order as the primary NameNode [12].

Hadoop Map Reduce:
The primary objective of Map/Reduce is to split the input data set into independent chunks that
are processed in a completely parallel manner. The Hadoop MapReduce framework sorts the
outputs of the maps, which are then input to the reduce tasks. Typically, both the input and the
output of the job are stored in a file system.

JobTracker:

Job Tracker keeps track of all the MapReduces jobs that are running on various nodes. This

schedules the jobs, keeps track of all the map and reduce jobs running across the nodes. If any

one of those jobs fails, it reallocates the job to another node, etc. In simple terms, JobTracker is

responsible for making sure that the query on a huge dataset runs successfully and the data is

returned to the client in a reliable manner.

TaskTracker:

TaskTracker performs the map and reduce tasks that are assigned by the JobTracker. TaskTracker
also constantly sends a hearbeat message to JobTracker, which helps JobTracker to decide
whether to delegate a new task to this particular node or not.

Apache Hbase
HBase is a column-oriented database management system that runs on top of HDFS. It is well

suited for sparse data sets, which are common in many big data use cases. Unlike relational

database systems, HBase does not support a structured query language like SQL; in fact, HBase

isn’t a relational data store at all. HBase applications are written in Java much like a typical

MapReduce application.

An HBase system comprises a set of tables. Each table contains rows and columns, much like a

traditional database. Each table must have an element defined as a Primary Key, and all access

attempts to HBase tables must use this Primary Key. An HBase column represents an attribute of

an object; for example, if the table is storing diagnostic logs from servers in your environment,

where each row might be a log record, a typical column in such a table would be the timestamp

of when the log record was written, or perhaps the server name where the record originated. In

fact, HBase allows for many attributes to be grouped together into what are known as column

families, such that the elements of a column family are all stored together. This is different from

a row-oriented relational database, where all the columns of a given row are stored together.

With HBase you must predefine the table schema and specify the column families. However, it’s

very flexible in that new columns can be added to families at any time, making the schema

flexible and therefore able to adapt to changing application requirements.

Just as HDFS has a NameNode and slave nodes, and MapReduce has JobTracker and TaskTracker

slaves, HBase is built on similar concepts. In HBase a master node manages the cluster and

region servers store portions of the tables and perform the work on the data.

All the webpages and Meta data which Apache Nutch crawler crawl is stored in the hbase tables.

This data is then used for further analysis, categorizing, extracting Meta information and

sometimes for updating the crawled data [7][8].

Apache Nutch

Apache Nutch is a highly extensible and scalable open source web crawler software
project. Stemming from Apache Lucene, the project has diversified and now comprises
two codebases, namely:

 Nutch 1.x: A well matured, production ready crawler. 1.x enables fine grained
configuration, relying on Apache Hadoop data structures, which are great for
batch processing.

http://lucene.apache.org/
http://hadoop.apache.org/

 Nutch 2.x: An emerging alternative taking direct inspiration from 1.x, but which

differs in one key area; storage is abstracted away from any specific underlying

data store by using Apache Gora for handling object to persistent mappings. This

means we can implement an extremely flexibile model/stack for storing

everything (fetch time, status, content, parsed text, outlinks, inlinks, etc.) into a

number of NoSQL storage solutions.

Nutch Phases of crawling:
Below are the phases of crawling [10]:

Create Seed list:

A URL seed list includes a list of websites, one-per-line, which Apache Nutch will look to

crawl.

Injectector job:
Injector job is to get URLs for crawling from the file seed.txt and apply filters (if any in
conf/regex-urlfilter.txt).

 Generator job:
Generator job is to select URLs for fetch job. Generating batchID (timestamp. any random
no.) containing URLs.

Fetcher Job:
Fetcher job is to fetch the URLs. Means to get html page of specific url.

Parser Job:
HTML parser and Apache Tika parser is used for parsing the fetched content like getting
title from title tags of html page.

DbUpdater Job:
DbUpdater update the crawl DB with new URLs (out links) fetched from crawling.

IndexingJob:
Index the crawled data to Solr (or elasticsearch). It copies the fields from Nutch to Solr.

http://gora.apache.org/

Figure 2. Apache Nutch Crawling Phases

Apache Solr

Apache Solr is an open source enterprise search platform, written in Java, from the Apache Lucene

project. Its major features include full-text search, hit highlighting, faceted search, real-time indexing,

dynamic clustering, database integration, NoSQL features and rich document (e.g., Word, PDF)

handling. Providing distributed search and index replication, Solr is designed for scalability and fault

tolerance. Solr is the second-most popular enterprise search engine after Elasticsearch.

Solr runs as a standalone full-text search server. It uses the Lucene Java search library at its core for

full-text indexing and search, and has REST-like HTTP/XML and JSON APIs that make it usable from

most popular programming languages. Solr's external configuration allows it to be tailored to many

types of application without Java coding, and it has a plugin architecture to support more advanced

customization.

Solr is bundled as the built-in search in many applications such as CMS/ECM systems. The major

Hadoop distributions from Cloudera, Hortonworks and MapR all bundle Solr as the search engine for

their Big Data platforms. Solr is supported as an end point in various data processing frameworks and

Enterprise integration frameworks.

Schema.xml

This is the main configuration file is solr. Here you can define fields just like in relational databases. For

example, possible fields for a web page can be title, content, text, URL, date, language, content-type etc.

Apache Nutch a schema file that is better option to use in solr schema instead of defining each field again.

You have to copy schema.xml file from Nutch conf directory to Solr conf directory (in corresponding core).

 <?xml version="1.0" encoding="UTF-8" ?>

- <schema name="nutch" version="1.5">

- <types>

- <!-- The StrField type is not analyzed, but indexed/stored verbatim. -->

 <fieldType name="string" class="solr.StrField" sortMissingLast="true" omitNorms="true"

/>

- <!-- <similarity class="org.apache.lucene.search.similarities.DefaultSimilarity"/> -->

- <!-- Default numeric field types. For faster range queries, consider the

tint/tfloat/tlong/tdouble types. -->

 <fieldType name="int" class="solr.TrieIntField" precisionStep="0" omitNorms="true"

positionIncrementGap="0" />

 <fieldType name="float" class="solr.TrieFloatField" precisionStep="0" omitNorms="true"

positionIncrementGap="0" />

 <fieldType name="long" class="solr.TrieLongField" precisionStep="0" omitNorms="true"

positionIncrementGap="0" />

 <fieldType name="double" class="solr.TrieDoubleField" precisionStep="0"

omitNorms="true" positionIncrementGap="0" />

- <!-- Numeric field types that index each value at various levels of precision

 to accelerate range queries when the number of values between the

range

 endpoints is large. See the javadoc for NumericRangeQuery for internal

 implementation details.

 Smaller precisionStep values (specified in bits) will lead to more

tokens

 indexed per value, slightly larger index size, and faster range

queries.

 A precisionStep of 0 disables indexing at different precision levels.

 -->

 <fieldType name="tint" class="solr.TrieIntField" precisionStep="8" omitNorms="true"

positionIncrementGap="0" />

 <fieldType name="tfloat" class="solr.TrieFloatField" precisionStep="8" omitNorms="true"

positionIncrementGap="0" />

 <fieldType name="tlong" class="solr.TrieLongField" precisionStep="8" omitNorms="true"

positionIncrementGap="0" />

 <fieldType name="tdouble" class="solr.TrieDoubleField" precisionStep="8"

omitNorms="true" positionIncrementGap="0" />

- <!--

 The format for this date field is of the form 1995-12-31T23:59:59Z, and

file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml

 is a more restricted form of the canonical representation

of dateTime

 http://www.w3.org/TR/xmlschema-2/#dateTime

 The trailing "Z" designates UTC time and is mandatory.

 Optional fractional seconds are allowed: 1995-12-31T23:59:59.999Z

 All other components are mandatory.

 Expressions can also be used to denote calculations that should be

 performed relative to "NOW" to determine the value, ie...

 NOW/HOUR

 ... Round to the start of the current hour

 NOW-1DAY

 ... Exactly 1 day prior to now

 NOW/DAY+6MONTHS+3DAYS

 ... 6 months and 3 days in the future from the start of

 the current day

 Consult the DateField javadocs for more information.

 Note: For faster range queries, consider the tdate type

 -->

 <fieldType name="date" class="solr.TrieDateField" omitNorms="true" precisionStep="0"

positionIncrementGap="0" />

- <!--

 A Trie based date field for faster date range queries and date faceting.

 -->

 <fieldType name="tdate" class="solr.TrieDateField" omitNorms="true" precisionStep="6"

positionIncrementGap="0" />

- <!--

 solr.TextField allows the specification of custom text analyzers

 specified as a tokenizer and a list of token filters.

Different

 analyzers may be specified for indexing and querying.

 The optional positionIncrementGap puts space between multiple

fields of

 this type on the same document, with the purpose of preventing

false phrase

 matching across fields.

 For more info on customizing your analyzer chain, please see

 http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

 -->

- <!--

 A general text field that has reasonable, generic

file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml

 cross-language defaults: it tokenizes with

StandardTokenizer,

 removes stop words from case-insensitive "stopwords.txt"

 (empty by default), and down cases. At query time only, it

 also applies synonyms.

 -->

- <fieldType name="text_general" class="solr.TextField" positionIncrementGap="100">

- <analyzer type="index">

- <similarity class="solr.DFRSimilarityFactory">

 <str name="basicModel">I(F)</str>

 <str name="afterEffect">B</str>

 <str name="normalization">H2</str>

 </similarity>

 <tokenizer class="solr.StandardTokenizerFactory" />

 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"

enablePositionIncrements="true" />

- <!--

 in this example, we will only use synonyms at query time

 <filter class="solr.SynonymFilterFactory"

synonyms="index_synonyms.txt" ignoreCase="true" expand="false"/>

 -->

 <filter class="solr.LowerCaseFilterFactory" />

 </analyzer>

- <analyzer type="query">

 <tokenizer class="solr.StandardTokenizerFactory" />

 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"

enablePositionIncrements="true" />

 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt" ignoreCase="true"

expand="true" />

 <filter class="solr.LowerCaseFilterFactory" />

 </analyzer>

 </fieldType>

- <!--

 A text field with defaults appropriate for English: it

file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml

 tokenizes with StandardTokenizer, removes English stop

words

 (stopwords.txt), down cases, protects words from protwords.txt,

and

 finally applies Porter's stemming. The query time analyzer

 also applies synonyms from synonyms.txt.

 -->

- <fieldType name="text_en" class="solr.TextField" positionIncrementGap="100">

- <analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory" />

- <!--

 in this example, we will only use synonyms at query time

 <filter class="solr.SynonymFilterFactory"

synonyms="index_synonyms.txt" ignoreCase="true" expand="false"/>

 -->

- <!--

 Case insensitive stop word removal.

 add enablePositionIncrements=true in both the index

and query

 analyzers to leave a 'gap' for more accurate phrase queries.

 -->

 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"

enablePositionIncrements="true" />

 <filter class="solr.LowerCaseFilterFactory" />

 <filter class="solr.EnglishPossessiveFilterFactory" />

 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt" />

- <!--

 Optionally you may want to use this less aggressive stemmer instead of

PorterStemFilterFactory:

 <filter class="solr.EnglishMinimalStemFilterFactory"/>

 -->

 <filter class="solr.PorterStemFilterFactory" />

 </analyzer>

- <analyzer type="query">

 <tokenizer class="solr.StandardTokenizerFactory" />

file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml

 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt" ignoreCase="true"

expand="true" />

 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"

enablePositionIncrements="true" />

 <filter class="solr.LowerCaseFilterFactory" />

 <filter class="solr.EnglishPossessiveFilterFactory" />

 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt" />

- <!--

 Optionally you may want to use this less aggressive stemmer instead of

PorterStemFilterFactory:

 <filter class="solr.EnglishMinimalStemFilterFactory"/>

 -->

 <filter class="solr.PorterStemFilterFactory" />

 </analyzer>

 </fieldType>

- <!--

 A text field with defaults appropriate for English, plus

 aggressive word-splitting and autophrase features enabled.

 This field is just like text_en, except it adds

 WordDelimiterFilter to enable splitting and matching of

 words on case-change, alpha numeric boundaries, and

 non-alphanumeric chars. This means certain compound word

 cases will work, for example query "wi fi" will match

 document "WiFi" or "wi-fi". However, other cases will still

 not match, for example if the query is "wifi" and the

 document is "wi fi" or if the query is "wi-fi" and the

 document is "wifi".

 -->

- <fieldType name="text_en_splitting" class="solr.TextField" positionIncrementGap="100"

autoGeneratePhraseQueries="true">

- <analyzer type="index">

 <tokenizer class="solr.WhitespaceTokenizerFactory" />

- <!--

 in this example, we will only use synonyms at query time

 <filter class="solr.SynonymFilterFactory"

synonyms="index_synonyms.txt" ignoreCase="true" expand="false"/>

 -->

file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml

- <!--

 Case insensitive stop word removal.

 add enablePositionIncrements=true in both the index

and query

 analyzers to leave a 'gap' for more accurate phrase queries.

 -->

 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"

enablePositionIncrements="true" />

 <filter class="solr.WordDelimiterFilterFactory" generateWordParts="1"

generateNumberParts="1" catenateWords="1" catenateNumbers="1" catenateAll="0"

splitOnCaseChange="1" />

 <filter class="solr.LowerCaseFilterFactory" />

 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt" />

 <filter class="solr.PorterStemFilterFactory" />

 </analyzer>

- <analyzer type="query">

 <tokenizer class="solr.WhitespaceTokenizerFactory" />

 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt" ignoreCase="true"

expand="true" />

 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"

enablePositionIncrements="true" />

 <filter class="solr.WordDelimiterFilterFactory" generateWordParts="1"

generateNumberParts="1" catenateWords="0" catenateNumbers="0" catenateAll="0"

splitOnCaseChange="1" />

 <filter class="solr.LowerCaseFilterFactory" />

 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt" />

 <filter class="solr.PorterStemFilterFactory" />

 </analyzer>

 </fieldType>

- <!--

 Less flexible matching, but less false matches. Probably not ideal for

product names,

 but may be good for SKUs. Can insert dashes in the wrong

place and still match.

 -->

file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml

- <fieldType name="text_en_splitting_tight" class="solr.TextField"

positionIncrementGap="100" autoGeneratePhraseQueries="true">

- <analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory" />

 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt" ignoreCase="true"

expand="false" />

 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" />

 <filter class="solr.WordDelimiterFilterFactory" generateWordParts="0"

generateNumberParts="0" catenateWords="1" catenateNumbers="1" catenateAll="0" />

 <filter class="solr.LowerCaseFilterFactory" />

 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt" />

 <filter class="solr.EnglishMinimalStemFilterFactory" />

- <!--

 this filter can remove any duplicate tokens that appear at the same

position - sometimes

 possible with WordDelimiterFilter in conjuncton

with stemming.

 -->

 <filter class="solr.RemoveDuplicatesTokenFilterFactory" />

 </analyzer>

 </fieldType>

- <!--

 Just like text_general except it reverses the characters of

 each token, to enable more efficient leading wildcard

queries.

 -->

- <fieldType name="text_general_rev" class="solr.TextField"

positionIncrementGap="100">

- <analyzer type="index">

 <tokenizer class="solr.StandardTokenizerFactory" />

 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"

enablePositionIncrements="true" />

 <filter class="solr.LowerCaseFilterFactory" />

 <filter class="solr.ReversedWildcardFilterFactory" withOriginal="true"

maxPosAsterisk="3" maxPosQuestion="2" maxFractionAsterisk="0.33" />

file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml

 </analyzer>

- <analyzer type="query">

 <tokenizer class="solr.StandardTokenizerFactory" />

 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt" ignoreCase="true"

expand="true" />

 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"

enablePositionIncrements="true" />

 <filter class="solr.LowerCaseFilterFactory" />

 </analyzer>

 </fieldType>

- <fieldtype name="phonetic" stored="false" indexed="true" class="solr.TextField">

- <analyzer>

 <tokenizer class="solr.StandardTokenizerFactory" />

 <filter class="solr.DoubleMetaphoneFilterFactory" inject="false" />

 </analyzer>

 </fieldtype>

- <fieldtype name="payloads" stored="false" indexed="true" class="solr.TextField">

- <analyzer>

 <tokenizer class="solr.WhitespaceTokenizerFactory" />

- <!--

 The DelimitedPayloadTokenFilter can put payloads on

tokens... for example,

 a token of "foo|1.4" would be indexed as "foo" with a payload of

1.4f

 Attributes of the DelimitedPayloadTokenFilterFactory :

 "delimiter" - a one character delimiter. Default is | (pipe)

 "encoder" - how to encode the following value into a playload

 float -> org.apache.lucene.analysis.payloads.FloatEncoder,

 integer -> o.a.l.a.p.IntegerEncoder

 identity -> o.a.l.a.p.IdentityEncoder

 Fully Qualified class name implementing PayloadEncoder, Encoder

must have a no arg constructor.

 -->

 <filter class="solr.DelimitedPayloadTokenFilterFactory" encoder="float" />

 </analyzer>

file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml

 </fieldtype>

- <!--

 lowercases the entire field value, keeping it as a single token.

 -->

- <fieldType name="lowercase" class="solr.TextField" positionIncrementGap="100">

- <analyzer>

 <tokenizer class="solr.KeywordTokenizerFactory" />

 <filter class="solr.LowerCaseFilterFactory" />

 </analyzer>

 </fieldType>

- <fieldType name="url" class="solr.TextField" positionIncrementGap="100">

- <analyzer>

 <tokenizer class="solr.StandardTokenizerFactory" />

 <filter class="solr.LowerCaseFilterFactory" />

 <filter class="solr.WordDelimiterFilterFactory" generateWordParts="1"

generateNumberParts="1" />

 </analyzer>

 </fieldType>

- <fieldType name="text_path" class="solr.TextField" positionIncrementGap="100">

- <analyzer>

 <tokenizer class="solr.PathHierarchyTokenizerFactory" />

 </analyzer>

 </fieldType>

- <!--

 My custom field for dictionary implementation

 -->

- <fieldType name="exactstring" class="solr.TextField" sortMissingLast="true"

omitNorms="true">

- <analyzer type="query">

 <tokenizer class="solr.KeywordTokenizerFactory" />

 </analyzer>

file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml

 </fieldType>

- <!--

 End of dictionary implementation

 -->

- <!--

 since fields of this type are by default not stored or indexed,

 any data added to them will be ignored outright.

 -->

 <fieldtype name="ignored" stored="false" indexed="false" multiValued="true"

class="solr.StrField" />

 </types>

- <!--

 <similarity class="solr.SchemaSimilarityFactory"/>

 -->

- <fields>

 <field name="id" type="string" stored="true" indexed="true" required="true" />

- <!--

 core fields

 -->

 <field name="batchId" type="string" stored="true" indexed="false" />

 <field name="digest" type="string" stored="true" indexed="false" />

 <field name="boost" type="float" stored="true" indexed="false" />

- <!--

 fields for index-basic plugin

 -->

 <field name="host" type="url" stored="false" indexed="true" />

 <field name="url" type="url" stored="true" indexed="true" />

 <field name="orig" type="url" stored="true" indexed="true" />

- <!--

 stored=true for highlighting, use term vectors and positions for fast

highlighting

 -->

 <field name="content" type="text_general" stored="true" indexed="true" />

 <field name="title" type="text_general" stored="true" indexed="true" />

file://vboxsrv/shared/schema.xml
file://vboxsrv/shared/schema.xml

 <field name="cache" type="string" stored="true" indexed="false" />

 <field name="tstamp" type="date" stored="true" indexed="false" default="NOW" />

- <!--

 catch-all field

 -->

 <field name="text" type="text_general" stored="false" indexed="true" multiValued="true"

/>

- <!--

 fields for index-anchor plugin

 -->

 <field name="anchor" type="text_general" stored="true" indexed="true"

multiValued="true" />

- <!--

 fields for index-more plugin

 -->

 <field name="type" type="string" stored="true" indexed="true" multiValued="true" />

 <field name="contentLength" type="string" stored="true" indexed="false" />

 <field name="lastModified" type="date" stored="true" indexed="false" />

 <field name="date" type="tdate" stored="true" indexed="true" />

- <!--

 fields for languageidentifier plugin

 -->

 <field name="lang" type="string" stored="true" indexed="true" />

- <!--

 fields for subcollection plugin

 -->

 <field name="subcollection" type="string" stored="true" indexed="true"

multiValued="true" />

- <!--

 fields for feed plugin (tag is also used by microformats-reltag)

 -->

 <field name="author" type="string" stored="true" indexed="true" />

 <field name="tag" type="string" stored="true" indexed="true" multiValued="true" />

 <field name="feed" type="string" stored="true" indexed="true" />

 <field name="publishedDate" type="date" stored="true" indexed="true" />

 <field name="updatedDate" type="date" stored="true" indexed="true" />

- <!--

 Custom fields created for indexing our OCR processed books

 -->

 <field name="publisher" type="string" stored="true" indexed="false" />

 <field name="publisherURL" type="string" stored="true" indexed="false" />

 <field name="domain" type="string" stored="true" indexed="false" />

 <field name="group" type="string" stored="true" indexed="true" />

- <!--

 Custom fields created for images and business data

 -->

 <field name="catagory" type="string" indexed="true" />

 <field name="address" type="text_general" indexed="true" stored="true" />

 <field name="city" type="string" indexed="true" stored="true" />

- <!--

 fields for creativecommons plugin

 -->

 <field name="cc" type="string" stored="true" indexed="true" multiValued="true" />

- <!--

 fields for tld plugin

 -->

 <field name="tld" type="string" stored="false" indexed="false" />

 <field name="_version_" type="long" indexed="true" stored="true" />

 </fields>

 <uniqueKey>id</uniqueKey>

 <defaultSearchField>content_urdu</defaultSearchField>

 <solrQueryParser defaultOperator="OR" />

 </schema>

References:

1. https://www.quora.com/Information-Retrieval-What-is-inverted-index
2. https://www.elastic.co/guide/en/elasticsearch/guide/current/inverted-index.html
3. http://bigdata-madesimple.com/top-50-open-source-web-crawlers-for-data-mining/

4. https://www.quora.com/What-is-the-best-open-source-web-crawler-and-why

5. http://nutch.apache.org/

6. http://hadoop.apache.org/

7. https://hbase.apache.org/book.html

8. https://en.wikipedia.org/wiki/Apache_HBase

9. https://github.com/renepickhardt/metalcon/wiki/simpleNutchSolrSetup

10. http://wiki.apache.org/nutch/Nutch2Crawling

11. http://searchcloudcomputing.techtarget.com/definition/Hadoop

12. http://www.webopedia.com/TERM/H/hadoop_distributed_file_system_hdfs.html

13. http://hadoopinrealworld.com/namenode-and-datanode/

14. https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-

hdfs/HdfsUserGuide.html

https://www.quora.com/Information-Retrieval-What-is-inverted-index
https://www.elastic.co/guide/en/elasticsearch/guide/current/inverted-index.html
http://bigdata-madesimple.com/top-50-open-source-web-crawlers-for-data-mining/
https://www.quora.com/What-is-the-best-open-source-web-crawler-and-why
http://nutch.apache.org/
http://hadoop.apache.org/
https://hbase.apache.org/book.html
https://en.wikipedia.org/wiki/Apache_HBase
https://github.com/renepickhardt/metalcon/wiki/simpleNutchSolrSetup
http://wiki.apache.org/nutch/Nutch2Crawling
http://searchcloudcomputing.techtarget.com/definition/Hadoop
http://www.webopedia.com/TERM/H/hadoop_distributed_file_system_hdfs.html
http://hadoopinrealworld.com/namenode-and-datanode/
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html

